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Abstract. Using the π-band tight-binding (TB) model and the quantum box boundary condition, we
have discussed how both of the applied strain and finite-length affect the energy bands of metallic carbon
nanotubes (CNTs). It is found that, for finite-length CNTs, energy gap for the armchair tube under uniaxial
strain and metallic zigzag tube under torsional strain will oscillate with increasing strain, which do not
exist in the case of infinite-length CNTs, and will be able to be observed by experiments in future.

PACS. 71.20.Tx Fullerenes and related materials; intercalation compounds

1 Introduction

Since their discovery [1] in 1991 by Iijima, the carbon nan-
otubes (CNTs) have been of great interest in mesoscopic
physics and nanotechnology because of their unique phys-
ical and chemical properties [2]. Theoretical studies pre-
dicted that a carbon nanotube can be either metallic or
semiconducting, depending on its helicity and size [3,4],
which has been confirmed by experimental observations,
e.g. the scanning tunneling microscopy (STM) studies on
the single-walled carbon nanotubes (SWNTs) [5,6].

Nanotubes, however, are usually supported on a solid
substrate in the experiments, causing various mechanical
deformations of the CNTs, and corresponding changes of
their electronic structures, shown by the atomic force mi-
croscopy and molecular mechanics calculations [7,8]. For
example, a symmetry breaking due to the deformation
may remove the energy level degeneracy. An increased cur-
vature due to the deformation can enhance the σ-π mixing
and rehybridization. Experimentally, resistance of SWNT
transistors was found to vary significantly under bending
and stretching [9], and an observed torsion of a metal-
lic SWNT was speculated to open a small band gap [10].
Several theoretical studies on the π-electronic properties
of the deformed SWNTs under two kinds of strains, i.e.
the uniaxial and torsional [11–15], have shown that the
band structures of the deformed SWNTs are determined
by their chiral symmetries and the kind of strains. Most of
the deformed SWNTs show a metal-semiconductor tran-
sition, occuring repeatedly with increasing strain. It is
known that under uniaxial strain, the derivative of band
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gap over strain is the largest for zigzag tubes and decreases
with increasing the chiral angle. In contrast, under tor-
sional strain, the derivative becomes the largest for arm-
chair tubes and decreases with decreasing the chiral angle.
In particular, armchair tubes under uniaxial strain and
metallic zigzag tubes under torsional strain remain to be
metallic [14,15].

Some recent progresses in research of the CNTs show
that they can be cut into short segments in length of a
few tens of nanometers [16]. In general, limiting CNT
length will lead to new electronic properties of CNTs.
Moreover, CNTs in practical experiments have only finite-
length. Thus, it is important to study such quantum size
effects in real systems. Actually, the discrete energy lev-
els due to finite-length of individual nanotubes and ropes
were observed in transport experiments [17,18]. Theoret-
ically, the energy levels of finite-length CNTs were found
to be tailored by the length and diameter of the nan-
otube [19] and the standing-wave (SW) was observed [20].
Due to the finite-length effects, the energy band of infinite-
length nanotubes will become the discrete energy levels in
finite-length nanotubes, making the finite-length CNTs to
be semiconducting even they are metallic in the case of
infinite-length.

In fact, it is inevitable to have both strains and finite-
length effects in the actual applications of CNTs. So, it
is interesting and important to study how coexistence
of the strain and finite-length affects electronic proper-
ties of CNTs. In this paper, using the π-band tight-
binding (TB) model and the quantum box boundary
condition, we discuss this problem in two kinds of de-
formed metallic nanotubes, i.e. the armchair under uni-
axial strain and the metallic zigzag tube under torsional
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strain. The σ − π hybridization effect [21,22], which is par-
ticularly important for CNTs with small diameter, is not
included in our TB based calculations.

This paper is organized as follows. In Section 2,
the electronic property of the finite-length deformed
SWNTs are presented. Results and discussions are given
in Section 3.

2 Method

A SWNT can be defined by a two-dimensional (2D) lattice

vector,
⇀

R = n
⇀
a1 + m
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By using the nearest neighbor π-band TB model with
one orbital per atom, the Hamiltonian of a deformed nan-
otube (n, m) can be given by:

H ′
T =

∑

〈i,j〉

{

ti,jc
+
i cj + h.c.

}

. (1)

Here, the sum over i, j is restricted to the nearest-neighbor
sites. The hopping coefficients ti,j are taken to be three
deferent values of t1, t2, t3 for three kinds of deformed
c-c bonds (r1, r2, r3), shown in Figure 1. Neglecting the
curvature effect, the primary effect of the bond defor-
mation is to alter the hopping parameters between the
two nearest neighbor carbon atoms, which is assumed to
scale with the bondlength as ti = t0(r0/ri)2(i = 1, 2, 3)
with t0 (t0 = −2.7 eV) and r0, the hopping parameter
and bond length of the undistorted tube, respectively [23].
Three ti (i = 1, 2, 3) are given as follows:

t1 = t04c2
h

( [√
3 (n + m) (1 + ec) − (n − m) tan (γ)

]2

+ (n − m)2 (1 + et)
2
)−1

,

t2 = t04c2
h

( [

−
√

3m (1 + ec) + (2n + m) tan (γ)
]2

+ (2n + m)2 (1 + et)
2
)−1

,

t3 = t04c2
h

( [

−
√

3n (1 + ec) − (n + 2m) tan (γ)
]2

+ (n + 2m)2 (1 + et)
2
)−1

. (2)

Here, et and ec represent the strains along the tube
axis and circumference, respectively, in the case of uni-
axial strain. And the Poisson ratio σ is equal to 0.2 (i.e.
ec = −0.2et) [15]. γ is the shear strain. Then, diagonaliza-

Fig. 1. Structure of a single graphene sheet. r1, r2 and r3

correspond to bond 1, 2, and 3, respectively.
⇀
a1 and

⇀
a2 are the

lattice vectors of the two dimensional sheet. ĉ and t̂ are unit
vectors along the circumference and tube axis, respectively.

tion of the Hamiltonian H ′
T gives an 1D band structure of

the nanotube (n, m) [14]
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where, N = 1, ..., Nc (Nc is the hexagon number
in an 1D unit cell), and − π

T ≤ k ≤ π
T (k is

the wave vector along the tube axis) with T , the
deformed 1D lattice constant determined by T =
(1 + et)

√
3cha0/gcd(2n + m, n + 2m) = (1 + et)T0. Here,

gcd refers to the largest common divisor and T0 is the
periodicity of undeformed CNT. The plus and minus sub-
scripts in equation (3) stand for the conduction and va-
lence band, respectively. The band gap of a (n, m) tube
in the presence of uniaxial (γ = 0) or torsional strain
(ec = et = 0) can be easily calculated from equation (3).

In case of armchair tubes (n, n) under uniaxial strain,
the energy dispersion relationship around the Fermi level



Hui Jiang et al.: Electronic structure in finite-length deformed metallic carbon nanotubes 505

can be obtained from equation (3) with N = n,

E±(k) = ±
{

t21 + 2t22 − 4t1t2 cos
(

1
2
k(1 + et)a0

)

+ 2t22 cos (k(1 + et)a0)

} 1
2

. (4)

By setting E± (k) = 0, we can find that the new Fermi
wave vector is now determined by kF = ± 2

T arccos
(

t1
2t2

)

,
which will change with the applied strain et. Obviously,
if the uniaxial strain disappears, we can still obtain kF =
± 2π

3T0
. Because the Fermi level of armchair tubes under

the uniaxial strain is still set to be zero, E± (k) can be ex-
panded over the small ∆k = k− kF and an approximated
expression is obtained as follows,

E± (k) ≈ ±T

2

√

4t22 − t21∆k, (5)

which can be regarded as two lines (1, 2) through kf1 and

two lines (3, 4) through kf2, with kf1 = 2
T arccos

(
t1
2t2

)

and kf2 = − 2
T arccos

(
t1
2t2

)

.

The metallic zigzag tubes (n, 0) under torsional strain
have two metallic subbands (N = 2n

3 , 4n
3 ) around the

Fermi level. Similar to the armchair tubes under the uniax-
ial strain, we can obtain the dispersion relationship around
the Fermi level by expanding E±(k) at kF ,

E± (k) ≈ ±T0

2
t2∆k. (6)

with the Fermi wave vector kF = ± 2
T0

(2π
3 − arccos(−(t1−

1
2 t3)

/

t2)). It is apparent that the energy dispersion rela-
tion around the Fermi level can also be regarded as four
lines, which are in fact double-degenerate for a perfect
metallic zigzag tube with kF = 0. However, in contrast
to the case of armchair tubes under the uniaxial strain,
two Fermi wave vectors of metallic zigzag tubes under
torsional strain belong to the different metallic subband
(N = 2n

3 , 4n
3 ), respectively.

Now, we transfer our attention to the finite-length ef-
fect. In the simple 1D quantum box model, the electron
eigenstates are SW of the form sin(kx). So, we can ob-
tain kL = jπ, with j = 0, 1, · · · , 0 ≤ k < π/T . Here,
L = (l + 1)T/2 is the effective tube length and l is the
total atomic layer number along the tube axis [20]. Then,
the discontinuous wave vector can be obtained as

k =
2πj

(l + 1)T0 (1 + et)
; (uniaxial) (7a)

k =
2πj

(l + 1)T0
. (torsional) (7b)

Fig. 2. Energy dispersion relationship around Fermi level of
armchair tube. The lines 1 and 2 represent the two allowed
bands. Arrowheads represent the movement direction of Fermi
wave vector. Broken lines represent the discrete allowed wave
vector, and short transverse lines represent allowed discrete
energy levels.

Considering the quantized wave vector k, equations (5)
and (6) can be expanded as follows:

Egap = T
√

4t22 − t21 min
(∣

∣
∣
∣

2πj

(l + 1)T
− kF

∣
∣
∣
∣

)

, (armchair)

(8)

Egap = T0 |t2|min
(∣

∣
∣
∣

2πj

(l + 1)T0
− kF

∣
∣
∣
∣

)

, (zigzag) (9)

where min (· · ·) represents choice of the minimal value of
the expression in the bracket.

3 Results and discussion

Because there are two variables, i.e. the applied strain
and tube length, in the energy-gap expression of these two
kinds of finite-length deformed metallic CNTs, we divide
our discussion into two parts.

First of all, we study the case of the fixed finite-length
tubes with increasing applied strain. Firstly, we consider
the armchair CNTs under uniaxial strain. By using equa-
tion (2), the hopping coefficients for the three kinds of
deformed c− c bonds is obtained as: t1 = t0 (1 − 2ec) and
t2 = t3 = t0 [1 − (ec + 3et)/2]. And equation (8) can be
reduced to

Egap =
√

3 |t0| (1 − 2et)T min
(∣

∣
∣
∣

2πj

(l + 1)T
− kF

∣
∣
∣
∣

)

, (10)

with kF = 2
T arccos

(
1
2 + 0.9et

) ≈ 2π
3T (1 − et). With in-

creasing strain et, kF holds allowed wave vector or not,
alternatively, implying that a phase transition between
metal and semiconductor will take place (Fig. 2). Accord-
ing to equation (10) and fix l = 98, we can get the rela-
tionship between energy gap and strain, and the obtained
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Fig. 3. Energy gap versus strain for finite-length armchair tube under uniaxial strain (a) and metallic zigzag tubes under
torsional strain (b). The energy gaps of these two kinds of infinite-length deformed tubes will equal to zero, which is independent
of the applied strain.

result is shown in Figure 3a, from which the periodic oscil-
lation of energy gap can be observed. Using the analytical
method, we find the oscillation period equals to 3/ (l + 1),
which will decrease with increasing the tube length. Obvi-
ously, if l = infinite, the periodic oscillation of the energy
gap will vanish. It is also found that there is a maximal
value of energy gap in each period, whose correspond-
ing Fermi wave vector lies between two nearest discrete
allowed wave vectors. Moreover, with increasing et, the
maximal value of energy gap in each period will gradually
decrease, which is due to the absolute value of the slope
of E± (k) around the Fermi level decreases with increas-
ing the strain, causing the corresponding decrease of the
energy gap. Secondly, we turn to the case of fixed finite-
length metallic zigzag tubes under the torsional strain by
using the same way as stated above. According to equa-
tion (2), equation (9) can be reduced to,

Egap = T0 |t0|
(

1 − γ2
)

min
(∣

∣
∣
∣

2πj

T0 (l + 1)
− kF

∣
∣
∣
∣

)

, (11)

with kF = 2
T0

(

arccos
(

−
(

1
2 + 3

√
3

4 γ
))

− 2π
3

)

≈
2
T0

(

1.5γ + γ2/
√

3
)

. The periodic oscillation of the energy
gap can still be observed (shown in Fig. 3b). And the
analytical expression of the oscillation period is approxi-
mately obtained as π/ (1.5 × (l + 1)), which will decrease
with increasing the tube length. However, with increasing
the strain γ, the maximal value of energy gap in each pe-
riod almost does not change, which is due to very small γ2

in equation (11). In a word, when the atomic layer number
is fixed, the energy gaps of these two kinds of deformed

metallic nanotubes will oscillate periodically with increas-
ing of the strain.

Finally, we study the energy gap of deformed CNTs
under fixed strain with increasing tube length and still
obtain the periodic oscillation of the energy gap. First,
we take the elongated armchair tube (et = 0.03) as an
example. The result of energy gap versus tube length is
shown in Figure 4. With the help of equation (10), using
the analytical perturbation method, we find there are two
fundamental oscillation frequencies, i.e. a slow one at et

and a fast one at (1 − et) /3, which can be exactly found
from their Fourier Frequency Analysis (FFA) (shown in
Fig. 5). And it is apparent that the slow and fast oscil-
lation frequencies will increase and decrease, respectively,
with increasing the strain. Furthermore, it can be found in
Figure 4 that the maximums of energy gap in each period
decrease with increasing of tube length. This is because
the difference between two nearest discrete allowed wave
vectors k will become smaller when the tube length is in-
creased. Obviously, if the tube is infinite, the wave vector
k will be continuous, leading to zero energy-gap. For the
twisted metallic zigzag tube (γ = 0.03), similar conclusion
can be drawn and the related result is shown in Figure 6.
But in this case, the energy gap only shows a slow oscil-
lation with its frequency at

(

1.5γ + γ2/
√

3
)

/π, which is
also well consistent with the result of FFA.

In the end, we should emphasize that the bond changes
due to the curvature effect [23,24] was not included in
our analytical formula, making our analytical results in-
dependent of the tube radius. In order to demonstrate
the utility of our theoretical formula, we have made the
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Fig. 4. Energy gap versus tube length of elongated finite-length armchair tubes.

Fig. 5. The Fourier Frequency Analysis (FFA) of the energy gap versus tube length of elongated finite-length armchair tubes
et = 0.03 (a) and et = 0.05 (b).
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Fig. 6. Energy gap versus tube length of finite-length metallic
zigzag tubes under torsional strain.

Fig. 7. The numerical results of energy gap versus uniaxial
strain for different armchair tubes with fixed length l = 50.
(a–f) correspond to (5, 5), (8, 8), (11, 11), (14, 14), (17, 17)
and (25, 25) tubes, respectively. (g) The analytical result for
armchair tube with l = 50.

numerical calculations in the pi-orbital nearest neighbor
Hamiltonian on the energy gap versus uniaxial strain for
armchair tubes of (5, 5), (8, 8), (11, 11), (14, 14), (17, 17)
and (25, 25) with fixed length l = 50 by taking into
account the curvature effects through a dependence of
the hopping integral on the tube radius (Harrison rela-
tion [23]), whose results are shown in Figure 7a−f. It is

found that, with increasing the tube diameter, our results
will converge rapidly towards the analytical one (shown in
Fig. 7g) obtained from equation (8), indicating that our
analytical formula is valid for large diameter.

In summary, it is shown that the electronic properties
of metallic CNTs are very sensitive to both of the ap-
plied strain and tube length. If we fix one of them and
change another, the metallic CNTs will show oscillations
of the energy gap and a metal-semiconductor transition
will occur periodically, which could be used as a new ex-
perimental tool to precisely measure the nano-scale me-
chanical deformation degree, and used in future nano-
electromechanical devices.

This work was supported by the Natural Science Founda-
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No. 90103038.
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5. J.W.G. Wildöer, L.C. Venema, A.G. Rinzler, R.E. Smalley,
C. Dekker, Nature (London) 391, 59 (1998)

6. T.W. Odom, J.-L. Huang, P. Kim, C.M. Lieber, Nature
(London) 391, 62 (1998)

7. T. Hertel, R. Martel, Ph. Avouris, J. Phys. Chem. B 102,
910 (1998)

8. T. Hertel, R. Walkup, Ph. Avouris, Phys. Rev. B 58, 13870
(1998)

9. W. Thomas et al., Appl. Phys. Lett. 76, 2414 (2000)
10. W. Clauss, D.J. Bergeron, A.T. Johnson, Phys. Rev. B 58,

R4266 (1998)
11. R. Heyd, A. Charlier, E. McRae, Phys. Rev. B 55, 6820

(1997)
12. D.W. Brenner, J.D. Schall, J.P. Mewlkill, D.A. shenderova,

S.B. Sinnott, Interplanet. Soc. 51, 137 (1998)
13. C.L. Kane, E.J. Mele, Phys. Rev. Lett. 78, 1932 (1997)
14. L. Yang, M.P. Anantram, J. Han, J.P. Lu, Phys. Rev. B 60,

13874 (1999)
15. L. Yang, J. Han, Phys. Rev. Lett. 85, 154 (2000)
16. L.C. Venema, J.W.G. Wildöer, H.L.J. Temminck Tuinstra,
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